Uwe Köster, Albert Schnak, Dennis Vollert

HOCHSCHULE NEUBRANDENBURG University of Applied Sciences

13. Jenaer GeoMessdiskurs – Sensorsysteme in der Praxis

Ingenieurgeodätisches Monitoring mit Multipler Sensorik

Kontakt: koester@hs-nb,de

Inhalt

HOCHSCHULE NEUBRANDENBURG University of Applied Sciences

- 1. Motivation
- 2. Zeitreihenanalyse
- 3. Verwendete Sensoren
- 4. Voruntersuchungen
- 5. Messung vor Ort
- 6. Auswertung der Messdaten
- 7. Ergebnisse
- 8. Ausblick

- Warum Bauwerksüberwachung? -

1. Motivation

- Funktions- und Standsicherheit
- Störungsfreier Betrieb
- Schutz von Menschenleben
- Schutz vor wirtschaftlichen Schäden

mm

Bild 1: Einsturzstelle Kölner Stadtarchiv [Morgenthal, et al., 2019]

29.06.2023

HOCHSCHULE

NEUBRANDENBURG

University of Applied Sciences

Anforderungen an die moderne Bauwerksüberwachung:

- ✓ Dauerhafte Überwachung
- ✓ Kostengünstig
- ✓ Einfach zu Installieren und zu betreuen
- ✓ Echtzeitalarmierung

2. Zeitreihenanalyse

HOCHSCHULE NEUBRANDENBURG University of Applied Sciences

Was ist Zeitreihenanalyse?

- Werkzeug aus der Signaltechnik
- Untersuchung von zeitlich geordneten Folgen von Messwerten

Was ist eine Zeitreihe?

 \succ Zeitlich geordnete Folge von Realisierungen N einer jeden Messgröße

Voraussetzungen für korrekte Auswertung einer Zeitreihe:

- Nyqvist-Shannon-Abtasttheorem
- Zeitliche Äquidistanz
- Stationarität
- Zentrierung und Trenderscheinungen
- Datenlücken
- Datensprünge

2. Zeitreihenanalyse

Fouriertransformation

- Übergang auf den Frequenzbereich mittels (FT) Fouriertransformation

$$\hat{f}(F) = \int_{-\infty}^{+\infty} f(t) e^{-2\pi i F t} dt$$

In der Praxis Nutzung der diskreten (DFT) Fouriertransformation

Uwe Köster, Albert Schnak, Dennis Vollert

N-1

HOCHSCHULE

3. Verwendete Sensoren

- 1. Nivel210 Präzisionsneigungsmesser
- 2. Leica Tachymeter
- 3. Leica GNSS und Low-Cost GNSS
- 4. Smartphone als Beschleunigungsmesser auf MEMS-Basis

HOCHSCHULE NEUBRANDENBURG University of Applied Sciences

Leica Nivel210

Tabelle 1: Technische Daten Leica Nivel210 [Leica Geosystems, 2005]

Sensor:	Leica Geosystems Nivel210
Messbereich:	-1,51 mrad bis +1,51 mrad
Auflösung:	0,001 mrad
Nullpunktstabilität:	0,0047 mrad
Genauigkeit:	± 0,0047 mrad (0,3 mgon)
Spannung:	9 – 15 V
Leistungsaufnahme:	50 mA
Messfrequenz über GeoCOM:	6 Hz

Bild 3: Nivel210

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Leica TM30

Bild 4: Leica TM30

Tabelle 2:Technische Daten Leica TM30 [Leica Geosystems, 2009]

Sensor:	Leica Geosystems TM30
Genauigkeit Hz, V:	0,5" (0,15 mgon), 1" (0,3 mgon)
ATR-Winkelgenauigkeit:	1"(0,3 mgon)
Kompensator Einspielbereich:	4' (0,07 gon)
Einspielgenauigkeit:	0,5" (0,15 mgon)
Genauigkeit Strecke (Prisma):	Precise-Mode 0,6 mm + 1 ppm
Genauigkeit Strecke (RL):	Standard Modus 2 mm + 2 ppm
Maximale Reichweite EDM:	5400 m (Standard Modus)
	12000 m (Long Range Modus)
Messfrequenz über GeoCOM:	20 Hz

Uwe Köster, Albert Schnak, Dennis Vollert

miii

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Leica GMX-902 GG

Bild 5: Leica GMX902 GG

u-blox ZED-F9P-04B

Bild 6: u-blox ZED-F9P-04B

Tabelle 3:

Technische Daten Leica GMX-902 [Leica Geosystems, 2010]; u-blox ZED-F9P-04B, [u-blox AG, 2021]

Sensor	Leica GMX-902 GG	u-blox ZED-F9P-04B
Kanäle	72	184
Satellitensysteme	GPS; GLONASS	GPS; GLONASS, Galileo,
		Beidou
Abtastrate	20 Hz	20 Hz
Frequenzen	L1, L2	L1, L2, (E1-B/C, E5b), (B1l,B2l)

Uwe Köster, Albert Schnak, Dennis Vollert

3. Verwendete Sensoren

HOCHSCHULE NEUBRANDENBURG University of Applied Sciences

Smartphones:

- Samsung Galaxy S9 (SM-G960F)
- Samsung Galaxy S10 (SM-G973F)
- Samsung Galaxy S4
- Auswertung der Beschleunigungsdaten •

Grundsatz zur Umwandlung:

- Es wurden Beschleunigungen mit gemessen.
- Diese müssen durch doppelte Integration in metrische Amplituden umgewandelt werden

 $A(t) = A_B \cdot \sin(2\pi f t + \varphi)$

Schwingungsgleichung einer Harmonischen Schwingung

$$\int A \, dt = \int A_B \cdot \sin(2\pi f t + \varphi) \, dt = \frac{-A_B}{2\pi f} \cdot \cos(2\pi f t + \varphi) + C$$

Amplitude der Geschwindigkeit nach Integration der Beschleunigung nach der Zeit

$$\iint A \, dt \, dt = \int \frac{-A_B}{2\pi f} \cdot \cos\left(2\pi ft + \varphi\right) + C \, dt = \frac{-A_B}{4\pi^2 f^2} \cdot \sin\left(2\pi ft + \varphi\right) + Ct + \tilde{C}$$

Amplitude des Weges nach Integration der Geschwindigkeit nach der Zeit

Uwe Köster, Albert Schnak, Dennis Vollert

4. Voruntersuchungen

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Inhalte der Voruntersuchungen:

- Messung und Auswertung von Bewegungen mit festgestellter Frequenz und Amplitude
- Nutzung eines Schwingtisches mit einer festen Amplitude von 0,8 mm und einstellbaren Frequenzen

Bild 7: Schwingtisch mit GNSS-Antenne

4. Voruntersuchungen

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Bild 8: Amplitudenbestimmung des Schwingtisches mittels Smartphone

4. Voruntersuchungen

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Uwe Köster, Albert Schnak, Dennis Vollert

5. Messung vor Ort

- Marienkirche Neubrandenburg
- Schäden aus den letzten Kriegstagen des 2. Weltkrieges
- 2007 Installation des neuen Glockenstuhls und der fünf neuen Glocken
- Berichte von starken Turmschwingungen aufgrund des Glockenläutens

Bild 10: Glockenstuhl

Bild 11: Marienkirche Neubrandenburg

Uwe Köster, Albert Schnak, Dennis Vollert

29.06.2023

Folie 16/25

5. Messung vor Ort

Frequenzbestimmung des Bewegungsverhaltens Glocken ist notwendig zur Verifikation der verschiedenen Einwirkfrequenzen auf den Kirchturm.

Fündf verschiedene Glocken ergeben fünkf verschiedene Einwirkungen auf die Gebäudestruktur.

Tabelle 4:technische Daten der Kirchenglocken der Marienkirche

HOCHSCHULE

NEUBRANDENBURG

Bild 12: Glockenstuhl beim Läuten

Glocke	Frequenz in Hz	Durchmesser in m	Gewicht in kg	Schlagton
Marienglocke	0,38	1710	3363	h°
Johannesglocke	0,42	1322	1695	e'
Gebetsglocke	0,47	1045	828	gis'
Sakramentsgloc ke	0,48	984	702	a'
Lob- und Dankglocke	0,50	894	538	h'

Uwe Köster, Albert Schnak, Dennis Vollert

5. Messung vor Ort

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Bild 13: Verteilung der Multiplen Sensorik an und in der Kirche

6. Auswertung der Daten

- Auswertung in der Software Matlab oder Octave
- Durchführung einer Zeitreihenanalyse mittels Fast-Fourier-Transformation (FFT)
- Ergebnis: Amplitudenspektren aller Sensoren mit Amplituden und Frequenzen der Glockenschwingungen und der Mauerschwingungen
- Umwandlung von beschleunigungsbezogenen Amplituden in das metrische System

6. Auswertung der Daten

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Bild 14: Neigungsmessung des Kirchturmes alle 5 Glockenbewegungen und 5 Oberschwingungen sind sichtbar.

Uwe Köster, Albert Schnak, Dennis Vollert

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Bild 15: GNSS-Messung des Kirchturmes 2 Glockenbewegungen und 2 Oberschwingungen sind sichtbar.

Uwe Köster, Albert Schnak, Dennis Vollert

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Bild 16: Richtungsmessung mit Tachymeter des Kirchturmes 1 Glockenbewegung und 2 Oberschwingungen sind sichtbar.

Uwe Köster, Albert Schnak, Dennis Vollert

6. Auswertung der Daten

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Bild 17: Beschleunigungsmessung des Kirchturmes 4 Oberschwingungen sind sichtbar.

Uwe Köster, Albert Schnak, Dennis Vollert

7. Ergebnisse

HOCHSCHULE NEUBRANDENBURG

University of Applied Sciences

Tabelle 5:

Frequenzen der Grundschwingungen und Oberschwingungen als Ergebnisse der Schwingungsanalyse

Glocke	Frequenz in Hz	Gebäude-schwingung in Hz	Multiplikator
Marienglocke	0,39	1,14	3
Johannesglocke	0,42	1,26	3
Gebetsglocke	0,47	1,41	3
Sakramentsglocke	0,48	1,44	3
Lob- und Dankglocke	0,50	1,50	3

- Nachweis der Turmschwingung konnte erbracht werden
- Amplitude der Schwingung geringer als erwartet, nur ca. 1 mm
- Frequenz der Gebäudeschwingungen 3 mal so hoch wie die Glockenfrequenzen Resonanz

Bild 18: eingesetzte Sensorik bei der Messung

Ausblick und weiterführende Arbeiten:

- Auswertung mit weiteren Verfahren wie Short-Time-Fourier-Transformation (STFT) und Wavelet-Transformation (WT)
- Messung der Turmschwingungen mittels Low-Cost-GNSS
- Einbindung der RTKLIB Echtzeitdaten in Monitoringsysteme

Morgenthal, Guido, Rau, Sebastian und Nowack, Markus. 2019. [Hrsg.] Fraunhofer-Informationszentrum Raum und Bau. *Effizientes Bauwerksmonitoring mit MEMS-Neigungssensoren und Mikrocontrollern.* [Abschlussbericht Forschungsprojekt]. Stuttgart : Fraunhofer IRB Verlag, 2019

Leica Geosystems. 2005. Leica Nivel210/Nivel220 - Precision inclination sensor for structural monitoring. [Datenblatt]. Heerbrugg, Schweiz : s.n., 2005

Leica Geosystems. 2009. Leica TM30 - Technische Daten. [Datenblatt]. Heerbrugg, Schweiz : s.n., 2009

Leica Geosystems. 2010. Leica GMX902 GG - Leica GMX902 Empfänger Hochfrequenz GNSS Monitoring von bewegten Bauwerken. [Online] 15. Dezember 2022. [Datenblatt] . [Zitat vom: 01. April 2023.] https://leica-geosystems.com/-media/files/leicageosystems/products/flyer/leica_gmx902_series_monitoring_fly.ashx?la=de-at&hash=57EE7562576CF8916E3D1619049A5CC3

U-blox. 2021. ZED-F9P - u-blox F9 high precision DDSS module. ZED-F9P Data sheet [Online] 21. Dezember 2021. [Zitat vom: 01. April 2022.] https://content.u-blox.com/sites/defaultifilesiZED-F9P-041ELDataSheet_UBX-21044850.pdf. UBX-21044850 -1101.